
Kinyata, L.G. TJIS, Vol. 3, Issue 2 (December 2023) pp. 28–35 ISSN: 2738-9006 Online

To cite this article: Kinyata, L.G. (2023). Measuring the Effectiveness and Quality of Agile Software Design Methodologies. TEKU Journal of Interdisciplinary
Studies, 3(2), 28–35

 28

Teofilo Kisanji University

TEKU Journal of Interdisciplinary Studies (TJIS)

 https://www.teku.ac.tz/tjis.php

ORIGINAL ARTICLE
Received: 12th January 2023

 Revised: 12th Nov. 2023

Accepted: 15th Dec. 2023

Published: 29th Dec. 2023

Available at
http://teku.ac.tz/article1.php

Measuring the effectiveness and Quality of Agile Software Design Methodologies

George Lawrence Kinyata

Faculty of Science and Technology, Teofilo Kisanji University, P.O. Box 1104, Mbeya, United Republic of Tanzania.

Correspondence: ict.teku@gmail.com

Abstract
The comparison between traditional and agile methodologies indicates that agile methodologies are a complete shift away from

traditional methodologies. The paper investigates how to measure the effectiveness and quality of agile software design

methodologies. The key agile metrics include Velocity, Sprint burn-down, and Release burn-up; however, other useful agile

metrics include Valued delivered, on-time delivery, Software Size, Project schedule, and software productivity. Despite the

various benefits of agile methodologies, various criticisms persist for example; agile is too developer-centric, inefficient in

developing large-scale projects, constant user involvement, lack of documentation, and above all misinterpretation of the Agile

manifesto. Such criticisms may inevitably have a negative impact on the expected quality of the final product.

Keywords: effectiveness and quality, agile software, software development, design methodologies

1. Introduction
Pinto (2007) defines a project as a collection of interrelated

activities with a clearly defined start and end date, carried

out in an organized manner to achieve specified objectives.

However, to be more specific, software methodologies are

concerned with activities that relate to the

design/development of information systems. Chemuturi &

Cagley (2010) define a software design methodology as an

organized approach that identifies a series of steps (stages)

that can be followed from the start of the project to the end

when the software is finally delivered to the end users. The

chosen methodology includes a set of procedures, tools, and

techniques that will help the developer in designing the

software that meets user requirements.

Several software design methodologies exit;

common methods include the waterfall model, the V model,

and the Spiral model; these are often referred to as

traditional methodologies. Given the dynamic software

development environment, traditional methodologies are

weak in keeping up with changing customer needs; for

example, the waterfall model ignores user involvement

during the design stage; user involvement is often limited at

the start and at the end of the project. Thus, given changing

customers’ requirements, especially during the design

process, the use of traditional methodologies such as the

waterfall model may lead to users not accepting the system

once it has been delivered.

Likewise, most traditional methodologies are linear and

sequential in nature, with output from the previous stage

being input for the next stage, thus the developers cannot

move to the next stage unless the previous stage has been

completed. As a result, traditional methodologies are time-

consuming and costly in terms of the human resources and

required money. All in all, this leads to slow software

progress, given that they are inflexible and rigid to

accommodate emerging user needs. Given the weaknesses

of the traditional methodologies, there is a need for dynamic

methodologies that can accommodate emerging user

requirements’ and can cope with the rapid pace of

technology. Such methodologies are commonly referred to

as agile software design methodologies, common examples

include Scrum, Extreme programming, clean room software

development, lean software development, future-driven

development but to mention a few (Harned, 2018).

2. Methodological Perspectives

The author relied on secondary data, mainly retrieved from

industry and academic journals, the main databases used for

searching of data included the Google Scholar, EBSCO,

Emerald, Oxford Journals OUP, and Pal graves Macmillan,

https://www.teku.ac.tz/tjis.php
http://teku.ac.tz/article1.php
mailto:ict.teku@gmail.com

Kinyata, L.G. TJIS, Vol. 3, Issue 2 (December 2023) pp. 28–35 ISSN: 2738-9006 Online

To cite this article: Kinyata, L.G. (2023). Measuring the Effectiveness and Quality of Agile Software Design Methodologies. TEKU Journal of Interdisciplinary
Studies, 3(2), 28–35

 29

but to mention a few. The literature search began by using

relevant search terms such as “agile software

Methodologies’’, “effectiveness of agile software

Methodologies”, “measuring the effectiveness of agile

software Methodologies”, and “quality of agile software

Methodologies,” but to mention a few.

3. The Concept of Agile Software Development

Cohen et al. (2004) define agility as the ability to create and

respond to changes to succeed in an uncertain and turbulent

environment. However, Williams (2007) defines agile

software development as a design methodology that

encourages an iterative and evolutionary approach to

software development. Thus agile methodologies offer a

more dynamic approach to software project management;

this is in contrast to traditional methodologies which are

often linear and sequential in nature. Awa, (2005) argues

that agile methodologies are reactive to user requirements,

due to their iterative nature, as a result software developers

can self-organize, self-prioritise and select which

tasks/activities to give more effort within the project.

 Gelperin (2008) argues that an agile methodology

encourages close cooperation between the development

team and other stakeholders to meet user requirements. Due

to the iterative and evolutionary nature of agile

development, testing early and testing often is highly

encouraged thus viruses/bugs can easily be identified,

instead of waiting for testing at a predetermined stage. It is

thus vital to note that agile methodologies are a complete

shift away from traditional methodologies such as waterfall,

agile is more dynamic, iterative, and evolutionary in nature.

The following basic principles of Agile

Methodologies have been adapted from Beck et al. (2001)

 Iterative and incremental development, this implies

that software is not developed in a linear/sequential

manner, but in a series of short iterations, often between

1 to 4 weeks. Iteration implies that a given stage can be

repeated several times; however, in the context of agile

iteration is considered to be complete when the given

time has expired.

 People-centric, the focus is on the end users and

developers who are responsible for planning, designing.

and delivering the project tasks at each stage of the

design.

 Enabling change, given the iterative and incremental

development approach, agile methodologies embrace

user-changing requirements at the end of each iteration;

as a result, the end product is modified to meet user

requirements

 Business focus, this refers to the fact that only features

with maximum importance for the business are

delivered thus no need to focus on irrelevant features.

 Regular product and process inspection, at the end of

iteration, the delivered product features are inspected

for errors and the team agrees on relevant process

improvements.

4. Common Examples of Agile Methodologies

4.1. Scrum

Schwalbe (2012) defines “scrum” as a framework within

which people can address complex problems while

productively and creatively delivering quality products. The

rationale behind scrum is the fact that software development

is unpredictable and a complicated process that cannot be

effectively planned and successfully estimated; however,

scrum is flexible and the iterative approach encourages

meeting user requirements. Below are the key stages of

scrum, together with their respective key activities

Stage Key activities

Pre-sprint

planning

 Gathering user requirements

 Analyze and prioritise

requirements

The sprint Translate user requirements into

relevant design

Post-sprint

meetings

 Demonstrate working software to

the client

 Gather user feedback to improve

design

 Repeat design processes till user

requirements are met

Table 1, Key stages of scrum

4.2. Extreme Programming (XP)

Lindstrom & Jeffries (2004) is based on the idea of iterative

development where users are closely involved during the

software development lifecycle. XP was first proposed by

Beck (1999) who argued that in XP changing requirements

is seen as normal and even healthy; likewise, it is acceptable

to start writing code early even when the requirements

analysis stage is still ongoing. Bell (2005) has listed several

rules that need to be adhered to when using XP some of

these include re-plan frequently, small releases, developing

relevant metaphors, maintaining simple design, code

refining, testing early, pair programming, collective

ownership, continuous integration, avoid overwork, user

involvement, follow coding standards and keep meetings

informal.

4.3. Cleanroom Software Development (CSD)

The concept of cleanroom software development was first

discussed by Oshana & Linger (1999), who coined the idea

of developing software with zero defects, thus extreme steps

are taken to avoid contamination of the software. The logic

behind CSD is to design software in an extremely clean

environment. All workers entering a required environment

are supposed to wear special sterilized clothing, thus

Kinyata, L.G. TJIS, Vol. 3, Issue 2 (December 2023) pp. 28–35 ISSN: 2738-9006 Online

To cite this article: Kinyata, L.G. (2023). Measuring the Effectiveness and Quality of Agile Software Design Methodologies. TEKU Journal of Interdisciplinary
Studies, 3(2), 28–35

 30

ensuring that the software designed is free from any errors

and defects.

 Kumar Sharma (2013) stresses the need to

incorporate CSD with formal methods, statistical testing and

reliability growth modelling, with the key objective being

error and defect avoidance in contrast to error and defect

removal or fault tolerance. It is vital to note that the cost of

removing errors/defects increases exponentially the longer

they are not detected, thus using cleanroom software

development will greatly reduce the cost of developing

software.

4.4. Lean Software Development (LSD)

Wang et al. (2012) argue that the idea of lean software

development is to eliminate potential waste from the

software development process. The concept of lean software

development has been extensively discussed by Pernstål et

al. (2013), who identified seven lean principles that can be

applied to agile software development. These principles

include;

 Optimize the whole—the focus is on the entire project,

not just on specific stages of the project

 Eliminate waste—focus on activities that create.

 Build quality in, quality is emphasized at every stage,

thus the final product should not have defects.

 Learn first, it is vital to learn about the process or

expected sub processes before work can begin

 Deliver fast, quick delivery of sub products will

enhance customer value thus ensuring that user

requirements do not become out-of-date

 Engage everyone, it is vital to ensure that all members

of the development team are fully engaged, the team

leader has daily feedback, and above ensure that all

stakeholders are fully aware about the responsibilities

and challenges at hand.

 Keep getting better, with each stage the design process

should be improved given lessons learnt from previous

stage, thus the focus should be to continuously improve

in order to gain full control of the project.

4.5. Feature Driven Development (FDD)

The concept of feature-driven development was initially

discussed by Palmer & Felsing (2002), the main focus is on

the design stages, rather than the entire software

development lifecycle. Key stages of FDD include;

 Develop an overall model; this includes developing

a logical model of the required system.

 Build a features list; the main activity at this stage

is to produce a complete list of system features to

support the user requirements

 Plan by feature, the key focus is to plan the order in

which the features will be developed, this takes into

account task dependencies, risk, complexity,

workload balancing and client-required milestone.

 Design by feature, this is an iterative stage that

focuses on designing object models based on

required features as prioritized by the chief

programmer.

 Build by feature, the key focus is to transform the

feature design into relevant and appropriate code,

code is inspected and unit tested, after successful

iteration the completed features are endorsed to be

built.

It is vital to note that all the stages of FDD are iterative and

adaptive to user needs; as a result, FDD methodology can

easily accommodate emerging user requirements and

changes; thus giving the developers the capacity to address

extremely complex problems that may arise during the

course of the software design process.

4.6. Dynamic System Development Methodology (DSDM)

In the early 1990 the United Kingdom government formed a

task group to investigate a management approach for

harmonizing the design of information systems across

government agencies and departments. As a result, the

DSDM was agreed upon; DSDM was built on the concept of

rapid application development and iteration. According to

Kasperek & Maurer (2013), DSDM philosophy is that any

project must be aligned to clearly defined strategic goals and

focus upon early delivery of real benefits to the end users.

The key stages in DSDM include;

 Feasibility study, the viability of the project is

determined, this takes into account the economical,

technical, legal, schedule and operational feasibility.

 Business study, key activities at this stage include

organizing workshops to understand the project and

business domain.

 Functional model iteration, this stage involves analysis,

coding, and prototyping, prototype results are used to

improve the logical models.

 Design and build iteration, key activities include system

design; users review functional design and improve it

via several iterations.

 Implementation, this is the final stage, where the

operational system is handed over to the end users.

Given the iterative and incremental nature of DSDM, it

encourages the developers to accommodate emerging

customer requirements, instead of building the project in one

lifecycle, thus the system is built through several iteration

cycles.

Kinyata, L.G. TJIS, Vol. 3, Issue 2 (December 2023) pp. 28–35 ISSN: 2738-9006 Online

To cite this article: Kinyata, L.G. (2023). Measuring the Effectiveness and Quality of Agile Software Design Methodologies. TEKU Journal of Interdisciplinary
Studies, 3(2), 28–35

 31

Comparison between Traditional and Agile Software

Methodologies

Traditional Agile

The

fundamental

logic, they are

based on

meticulous and

extensive

planning before

project

commencement

The planning is done in parallel with the

actual work.

Often follow

linear/sequential

stages that need

to be strictly

followed, thus

departure from

the original plan

is not

acceptable.

Allow for iteration, the developer can

revisit previous stages to meet emerging

user needs.

System testing

is often done at

a predetermined

stage often

towards the end

of the project

Encourage testing early and testing

often; testing can be carried out at any

stage.

Teams are

typically tightly

controlled by

the project

manager, to

ensure agreed

schedule and

costs are kept in

control.

Teams are self-directed and are free to

accomplish deliverable as they see fit, as

long as they follow agreed rules.

Teams work on

a final

product/project

that should be

delivered at a

specific time,

thus the project

doesn’t vary

from previous

clearly defined

goals set at the

beginning.

Teams constantly assess the scope and

direction of the product/project; thus the

project path will often deviate from

initial project requirements in order to

accommodate emerging user needs.

Table 2, Comparison between tradition and agile

methodologies Adapted from Sureshchandra &

Shrinivasavadhani (2008), & Dybå & Dingsøyr (2008)

5. Agile Metrics and Their Effectiveness

The IEEE Standard 610.12-1990 (IEEE, 1990) defines

software metric as a quantitative measure of the degree to

which a system, component, or process possesses a given

attribute. Therefore, the use of agile metrics can be used as

a measure of efficiency in order to improve effectiveness

and quality of a given software product. The key metrics

that can be used in measuring their effectiveness include;

5.1. Velocity

Hayes et al. (2014) velocity is the measure of the volume of

work or how much working software is delivered in each

sprint or in the agreed time. The velocity is often measured

as story points completed in each sprint (iteration). It is thus

vital to note that the velocity will often be unique given the

specific members of the team; this implies that the team

should always establish its velocity for the task at hand.

Below is an example of a bar chart showing the velocity for

a given team.

 Fig 1: Velocity chart

In figure 1, the height of each bar corresponds to the

respective sprint, for example sprint number 6 had 35 story

delivered by the team, which also happens to be the highest

velocity for the team. Thus one cannot expect the team to

have a velocity of 42 story points in sprint number 9 (not

shown on the chart, it is vital to note that this would be

unrealistic given the previous trend of sprints.

5.2. Sprint Burn-down

The sprint burn-down (Deiner, 2012) is a measure of the

team’s progress in completing their workload; this is often

shown on a day-by-day basis given the sprint being carried

out. Thus the burn-down rate is the amount of progress

depending on the number of items completed in the backlog.

The burn-down rate can be graphically shown on the chart

during the project development; the chart provides a

powerful technique because it provides the means of

displaying progress for the team during the sprint. Below is

an example of line a graph showing the sprint burn-down

rate for a given team.

Kinyata, L.G. TJIS, Vol. 3, Issue 2 (December 2023) pp. 28–35 ISSN: 2738-9006 Online

To cite this article: Kinyata, L.G. (2023). Measuring the Effectiveness and Quality of Agile Software Design Methodologies. TEKU Journal of Interdisciplinary
Studies, 3(2), 28–35

 32

Fig 2: Sprint burn-down chart

The vertical axis of the chart (figure 2) shows the chosen

workload for the sprint, while the horizontal axis shows the

number of days in the sprint. Overall it is clear that there is a

gradual decline in the remaining backlog items that need to

be completed (i.e. the story points remaining in the sprint

backlog). This is because the thick line running down from

left to right with time shown in days on the horizontal axis

shows the pace of work being completed; however, the

dotted line shows the ideal line against which the thicker

line can be compared. Take for instance there is a visible

variation in the rate for the achievement of day 6 because

the story points remaining on day 7 do not appear to have

declined as in the previous days, this is highlighted by the

dotted line. Thus the use of the sprint burn-down charts

makes it easy to show the completed tasks against remaining

task, given the story points to be delivered for the sprint.

5.3. Release burn-up

The release burn-up is the accumulation of the finished

work, thus with each completed sprint the delivered

functionality grows, and inevitably the release burn-up

increases. The chart below (figure 3) shows the release burn-

up for a given project.

Fig 3: Release burn-up chart

The vertical axis of the chart (figure 3) shows the buildup of

delivered value i.e. the story points while the horizontal axis

shows the sprint number thus covered in the given time. The

expected progress of value delivered is shown by the dotted line

running from the bottom left to the upper right of the graph,

while the thick line running from the bottom left to the upper

right of the graph shows the actual progress of value delivered.

Thus, the actual progress can easily be compared to the

expected progress; however, the line at the top of the graph is

used to show the total number of story points planned for

release.

Other Useful Metrics include the following:

Valued delivered

At the end of each sprint, we need to assess the project value

delivered; Ramesh et al., (2010) argue that users will often

prioritize high-value tasks at the start of the project, thus if

you are working on a predetermined project with a definite

end in sight, the initial sprints will often have high value and

impact, however value and impact will gradually decline as

one gets towards the end of the project. Thus an indicator

of the value delivered could be the number of story points

completed in each sprint.

On-time delivery

Having an agreed date when the software project will be

delivered is vital for the success of any organization;

otherwise, the majority of clients are not happy with long

delivery dates due to several iterative development cycles

which in theory and practice will often delay the project.

Thus, it is vital to note that the team’s velocity should be

reasonably steady otherwise wild swings from sprint to

sprint will make project planning difficult thus making it

difficult to deliver the project on time.

Software Size

The more the story points, the bigger the size of the

software, thus it is vital to ensure that the system

functionality and capabilities match the user requirements

and the total story points accumulated. Thus one can

measure the effectiveness of agile methodology by referring

to the total story points achieved concerning the

functionality and capabilities of the system by tracing these

to user requirements.

Project schedule

While using agile methodology each sprint is time-boxed,

which implies that the project schedule can be easily

estimated, thus the development team can work to maximize

performance during each sprint. Thus it is vital that the users

effectively communicate the project requirements by doing

this will increase the effectiveness and quality of the project.

Customer satisfaction

Due to their iterative and incremental design approach,

Agile methodologies are excellent at catering to customer

needs, likewise by utilizing acceptance criteria within each

user story, the team can effectively understand what the

customer needs. Thus this gives the developer the ability to

Kinyata, L.G. TJIS, Vol. 3, Issue 2 (December 2023) pp. 28–35 ISSN: 2738-9006 Online

To cite this article: Kinyata, L.G. (2023). Measuring the Effectiveness and Quality of Agile Software Design Methodologies. TEKU Journal of Interdisciplinary
Studies, 3(2), 28–35

 33

deliver code more frequently; thus improving the

effectiveness and quality of the software Projects.

Software productivity

DeMarco & Boehm (2002) argue that the use of productivity

is a more appropriate measure because it compels the team

to build software that can effectively contribute to the

team’s success rather than focusing on metric scores. Thus

one cannot underestimate software productivity as a

measure of effectiveness and quality; this is because

software productivity can be measured by the number of

working software that meets user requirements which have

been designed by the team.

6. Criticisms of Agile Methodologies

ANSI/IEEE Standard 729-1983 (IEEE, 1990) defines

software quality as the totality of features, and

characteristics of a product that affect its ability to satisfy

given needs, for example, conformance to requirements, free

from errors/defects and fit for purpose. Despite the various

benefits of agile methodologies; there are some criticisms

regarding their use. Inevitably, such criticisms will have a

negative effect on the expected quality of the final product.

 Agile methodologies are more developer-centric rather

than process-centric

Mohammad (2013) explains that Agile methodologies put

more emphasis on having highly qualified developers who

have technical and creative skills to work in a team;

however, such emphasis has the potential to create a

situation whereby technical skills are more valued than

customer-centric skills. In the long run, by being too

developer-centric, they will compromise the software

quality because developers have inadequate time with users

to effectively extract user requirements. Likewise, Conboy

et al. (2011) points out that agile methodology puts more

emphasis on people rather than processes; thus a lack of

structured processes during software design and

development could lead to costly architectural mistake thus

eventually leading to poor quality software.

 Agile methodologies are inefficient in developing

large-scale projects

Boehm & Turner (2005) argue that one of the main

challenges of Agile methodologies is that they are inefficient

for large-scale projects because of the large number of tasks

and developers involved, thus it becomes more difficult to

manage the expected story points required in each sprint,

and above all to coordinate time activities. Livermore

(2008) & Lagerberg et al. (2013) also argue that the use of

agile methodology in a large-scale project often leads to

communication breakdown among the team, primarily due

to the scale of tasks and the number of developers involved.

 Agile methodologies advocate for constant user

involvement/interaction

The Agile manifesto (Beck et al., 2001) advocates for

constant user involvement/interaction throughout the

software development process; however, too much emphasis

on user involvement/interaction is not realistic because

according to Mahanti (2007), the average user is not

knowledgeable enough regarding technical software design,

neither do they have the necessary commitment to be part of

a technical software design team. Neither the less having

constant user involvement could lead to many viewpoints

and conflict thus leading to low-quality software.

 Misinterpretation of the Agile manifesto

Some of the concepts within the Agile manifesto can easily

be misinterpreted for example the emphasis on simplicity,

however in the real world software development is complex

at best, because it involves modelling real life scenarios;

thus, in reality, “simplicity” is not enough in developing

quality software.

 Lack of documentation

Given the complexity of software development and higher

user involvement, the lack of proper and effective

documentation advocated for by Agile methodologies is

bound to lead to poor- quality software. Various industry

and academic experts such as Ambler (2009) and Nerur et

al. (2005) all emphasize the need for effective

documentation because it is easier to plan, monitor, manage

and control projects; above all, effective documentation

gives developers increased ability to identify problems

whenever they arise.

7. Conclusion

The key agile metrics include Velocity, Sprint burn-down,

and Release burn-up; however, other useful agile metrics

such as Valued delivered, on-time delivery, and Software

Size; however, Project schedule and software productivity

are arguably more realistic and practical given their impact

on customer satisfaction. It is also vital to note that the Agile

manifesto actively promotes the need to put users first over

and above any agreed contract and plan. With all its

weaknesses discussed on this paper, if well applied, the agile

methodologies will inevitably improve the effectiveness and

the quality of the software project delivered.

Funding

None

Conflicts of Interest

The author declares that there are no conflicts of interest

regarding the publication of this article because no funding

agent was involved.

Kinyata, L.G. TJIS, Vol. 3, Issue 2 (December 2023) pp. 28–35 ISSN: 2738-9006 Online

To cite this article: Kinyata, L.G. (2023). Measuring the Effectiveness and Quality of Agile Software Design Methodologies. TEKU Journal of Interdisciplinary
Studies, 3(2), 28–35

 34

Acknowledgments

I would like to thank Prof. Peter Chonjo, Paschal Sanka,

Peter Tarimo, Robert Kwene, Laurent Juma, Bernard

Msuya, Andrew Mwanga, Epaphras Mgina and Haikaeli

Bakuju for their support and encouragement.

Finally, I am grateful for Prof. Elia Mligo, for his reviews,

comments and corrections when writing the paper.

References

Ambler, S. W. (2009). Scaling agile software development

through lean governance. Proceedings of the 2009

ICSE Workshop on Software Development

Governance, SDG 2009, 1–2.

Awad, M. A. (2005). A comparison between Agile and

Traditional Software Development Methodologies. In

The University of Western Australia. The University

of Western Australia.

Beck, K. (1999). Extreme Programming Explained:

Embrace Change. XP Series, c, 224.

Beck, K., Beedle, M., Bennekum, A. Van, Cockburn, A.,

Cunningham, W., Fowler, M., Grenning, J.,

Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick,

B., Martin, R. C., Mellor, S., Schwaber, K.,

Sutherland, J., & Thomas, D. (2001). Manifesto for

Agile Software Development. The Agile Alliance.

Bell, D. (2005). Software Engineering for Students. In

Software Engineering for Students. Addison-Wesley.

Boehm, B., & Turner, R. (2005). Management Challenges to

Implementing Agile Processes in Traditional

Development Organizations. IEEE Software

Development, 22(5), 30–39.

Chemuturi, M., & M., Cagley, T. (2010). Mastering

software project management: best practices, tools and

techniques. In Mastering software project

management: best practices, tools and techniques

(Issue 1). J. Ross Publishing.

Cohen, D., Lindvall, M., & Costa, P. (2004). An

Introduction to Agile Methods. In Advances in

Computers (Vol. 62, Issue C, pp. 1–66).

Conboy, K., Coyle, S., Wang, X., & Pikkarainen, M. (2011).

People over process: Key challenges in agile

development. IEEE Software Development, 28(4), 48–

57.

Deiner, H. (2012). Test Management: Measuring Quality in

the Agile Enterprise. TechTarget Inc.

DeMarco, T., & Boehm, B. (2002). The agile methods fray.

IEEE Software Development, 35(6), 90–92.

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile

software development: A systematic review. In

Information and Software Technology (Vol. 50, Issues

9–10, pp. 833–859).

Gelperin, D. (2008). Exploring agile. Proceedings of the

2008 International Workshop on Scrutinizing Agile

Practices or Shoot-out at the Agile Corral - APOS

’08, 1–3.

Harned, D. (2018). Hands-On Agile Software Development

with JIRA: Design and manage software projects

using the Agile methodology. Packt Publishing.

Hayes, W., Miller, S., Lapham, M. A., Wrubel, E., & Chick,

T. (2014). Agile Metrics : Progress Monitoring of

Agile Contractors (Issue January). Software

Engineering Institute.

IEEE. (1990). IEEE Standard Glossary of Software

Engineering Terminology. In Office (Vol. 121990,

Issue 1, p. 1).

Kasperek, D., & Maurer, M. (2013). Coupling Structural

Complexity Management and System Dynamics to

represent the dynamic behavior of product

development processes. SysCon 2013 - 7th Annual

IEEE International Systems Conference, Proceedings,

414–419.

Kumar Sharma, H. (2013). E-COCOMO: The Extended

COst Constructive MOdel for Cleanroom Software

Engineering. Database Systems Journal, IV, 3–11.

Lagerberg, L., Skude, T., Emanuelsson, P., Sandahl, K., &

Stahl, D. (2013). The impact of agile principles and

practices on large-scale software development

projects: A multiple-case study of two projects at

Ericsson. International Symposium on Empirical

Software Engineering and Measurement, 348–356.

Lindstrom, L., & Jeffries, R. (2004). Extreme Programming

and Agile Software Development Methodologies.

Information Systems Management, 21(3), 41–52.

Livermore, J. A. (2008). Factors that significantly impact the

implementation of an agile software development

methodology. Journal of Systems and Software, 3(4),

31–36.

Mahanti, A. (2007). Challenges in Enterprise Adoption of

Agile Methods - A Survey. Journal of Computing and

Information Technology, 14(3), 197–206.

Mohammad, A. H. (2013). Agile Software Methodologies :

Strength and Weakness. International Journal of

Kinyata, L.G. TJIS, Vol. 3, Issue 2 (December 2023) pp. 28–35 ISSN: 2738-9006 Online

To cite this article: Kinyata, L.G. (2023). Measuring the Effectiveness and Quality of Agile Software Design Methodologies. TEKU Journal of Interdisciplinary
Studies, 3(2), 28–35

 35

Engineering Science and Technology (IJEST), 5(03),

455–459.

Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005).

Challenges of migrating to agile methodologies.

Communications of the ACM, 48(5), 72–78.

Oshana, R. S., & Linger, R. C. (1999). Capability Maturity

Model software development using Cleanroom

software engineering principles-results of an industry

project. System Sciences, 1999. HICSS-32.

Proceedings of the 32nd Annual Hawaii International

Conference On, Track7, 10 pp.

Palmer, S. R., & Felsing, M. (2002). A Practical Guide to

Feature Driven Development. In … Guide to Feature

Driven Development. Prentice-Hall.

Pernstål, J., Feldt, R., & Gorschek, T. (2013). The lean gap:

A review of lean approaches to large-scale software

systems development. Journal of Systems and

Software, 86(11), 2797–2821.

Pinto, J. K. (2007). Project Management Best Practices:

Achieving Global Excellence (Kerzner, H.; 2006).

IEEE Transactions on Engineering Management,

54(2), 391–392.

Ramesh, B., Cao, L., & Baskerville, R. (2010). Agile

requirements engineering practices and challenges: an

empirical study. Information Systems Journal, 20(5),

449–480.

Schwalbe, K. (2012). Managing a project using an agile

approach and the PMBOK® Guide. Proceedings of

the Information Systems Educators Conference ISSN,

1435.

Sureshchandra, K., & Shrinivasavadhani, J. (2008). Moving

from waterfall to agile. Proceedings - Agile 2008

Conference, 97–101.

Wang, X., Conboy, K., & Cawley, O. (2012). “Leagile”

software development: An experience report analysis

of the application of lean approaches in agile software

development. Journal of Systems and Software, 85(6),

1287–1299.

Williams, L. (2007). A Survey of Agile Development

Methodologies. In Univercsty of the West England.

Author’s Biography

George Lawrence Kinyata, is Assistant Lecturer of

Computer Science/IT at the Faculty of Science and

Technology, Teofilo Kisanji University in Tanzania; he is

an expert in Computer Accounting Packages

(QuickBooks & Tally), Database Design/Administration,

Artificial Intelligence, Operating Systems and Systems

Analysis/Design. Kinyata has a Master of Science Degree

in Information Systems Management and a BSc (Hons)

Degree in Business Information Technology all from

London South Bank University (UK).

